ARCTIC: A Dataset for Dexterous Bimanual Hand-Object Manipulation

1ETH Zürich, Switzerland, 2University of Amsterdam, the Netherlands, 3Max Planck Institute for Intelligent Systems, Tübingen, Germany

ARCTIC is a video dataset of hands dexterously manipulating articulated objects.

Dexterous Motion + Dynamic Contact

 

Annotation with MANO

Annotation with SMPLX

Rendered Depth

Here we only visualize human + object for simplicity.

Abstract

Humans intuitively understand that inanimate objects do not move by themselves, but that state changes are typically caused by human manipulation (e.g., the opening of a book). This is not yet the case for machines. In part this is because there exist no datasets with ground-truth 3D annotations for the study of physically consistent and synchronised motion of hands and articulated objects. To this end, we introduce ARCTIC -- a dataset of two hands that dexterously manipulate objects, containing 2.1M video frames paired with accurate 3D hand and object meshes and detailed, dynamic contact information. It contains bi-manual articulation of objects such as scissors or laptops, where hand poses and object states evolve jointly in time. We propose two novel articulated hand-object interaction tasks: (1) Consistent motion reconstruction: Given a monocular video, the goal is to reconstruct two hands and articulated objects in 3D, so that their motions are spatio-temporally consistent. (2) Interaction field estimation: Dense relative hand-object distances must be estimated from images. We introduce two baselines ArcticNet and InterField, respectively and evaluate them qualitatively and quantitatively on ARCTIC.

Video

Acknowledgement

The authors deeply thank: Tsvetelina Alexiadis (TA) for trial coordination; Markus Höschle (MH), Senya Polikovsky, Matvey Safroshkin, Tobias Bauch (TB) for the capture setup; MH, TA and Galina Henz for data capture; Nima Ghorbani for MoSh++; Leyre Sánchez Vinuela, Andres Camilo Mendoza Patino, Mustafa Alperen Ekinci for data cleaning; TB for Vicon support; MH and Jakob Reinhardt for object scanning; Taylor McConnell for Vicon support, and data cleaning coordination; Benjamin Pellkofer for IT/web support. We also thank Adrian Spurr and Xu Chen for insightful discussion. OT and DT were partially supported by the German Federal Ministry of Education and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039B". DT’s work was partially performed at the MPI-IS. 

BibTeX


@inproceedings{fan2023arctic,
  title = {{ARCTIC}: A Dataset for Dexterous Bimanual Hand-Object Manipulation},
  author = {Fan, Zicong and Taheri, Omid and Tzionas, Dimitrios and Kocabas, Muhammed and Kaufmann, Manuel and Black, Michael J. and Hilliges, Otmar},
  booktitle = {Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2023}
}